Everything you need to

know to start with C
while(98) printf(“#cisfun\n”);



What is C?

C is an imperative (procedural) language.
All the code has to be inside a function.
C files are source code of your program.

You have to compile C files with a compiler (for instance gcc) to create an
executable file.



Comments

#cisfun



Comments

Begins with /* and ends with */

Can be inserted anywhere a white-space character
is allowed

Comments don’t nest

Use comments to document your code

%/



Variables

#cisfun



Data types | Integer types (on most 64bits computers)

Type Storage size Value range

char 1 byte -128 to 127

unsigned char 1 byte 0 to 255

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

int 4 bytes -2,147,483,648 to 2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295

long 8 bytes -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned long

8 bytes

0 to 18,446,744,073,709,551,615




Declaration

Variables always have a type.

Syntax:
Cype var name;
Example:
1}

Canalr

Names of variables: [a-zA-z_][a-zA-Z 0-9]*



Arrays

A succession of items of the same type in memory
Declaration: type var name[number of items];

Where number_of items is a constant number (not a variable)

Example:

int my array[32];

char my array of arrays[8][16];



Structures

A complex data type declaration that
defines a physically grouped list of
variables to be placed under one name
in a block of memory

Creation and declaration

struct structure name ({
type name;
JLICI 0]

}s

struct structure name var name;

Example

Creation of a new type called new_struct

struct new struct {
int a;

char b[32]1:
}

Declaring a variable of type new_struct

struct new struct s;



Arrays and structures

Arrays of structures

struct new struct var arrayl[32]:;

Structures with structures elements

struct student {
‘ first name([32];
char last name[32];
struct address addr;



Functions, Programs

#cisfun



Functions

A program is a collection of functions
Functions:

e Sequence of program instructions that perform a specific task,
packaged as a unit

May take arguments as input information

Compute something

May return a result

Functions can call functions

Parameters and return values must have a type



return type function name (type param, type2 param2 [...])
[block]

ant func(int a, char b)
[block]




The entry point | main

Program starts with the entry point. In C it's the main function
From the main function you can call other functions
When main returns, the program stops

int main (void)

int main(int ac, char **av)

main ( ac, %y **any)



Blocks

Blocks or code blocks are sections of code which are grouped together. Blocks
consist of one or more declarations and statements.

Blocks are delimited by curly braces { and }

Syntax
{

[declaration(s) ]

[statement (s) ]



Blocks

Declarations

Declare variables

Statements

Executed in order

Contains:

e Blocks

e Instructions (assigning values,
computing)

e Control structures (conditional
statements, loops)



Blocks | Example
Int Fuane (int a, aint b)

{ {

int mul; int mul;

int sum; int sum;

int result; int result;

mul = a * b; mul = a * b;

sum = a + b; sum = a + b;

result = mul + sum; result = mul + sum;

return (result):; return (result):;



Instructions, Expressions

#cisfun



Instructions, expressions

Expression, followed by ;
; (semicolon) is a statement terminator (indicates the end of one logical entity)

Expressions always have a value
Types of expressions:

Basic expressions (i.e. arithmetic operations)

Affectations (i.e. assigning a value to a variable)

Comparisons (i.e. checking if a variable is less than a number)
Logical operators (i.e. checking two things at the same time)
Binary operators



Basic expressions

Basic expressions: Numbers, variables, arithmetics, function calls

Numbers can be written in decimal (32), octal (032) or hexadecimal (0x32)

The value of a variable is the value it contains

32, 032, 0x32, variable
varl + var2, (var * 32) / 1024, (expression)

The value of a function call is its return value (after execution)

func (expressionl, expression?2 [...]);
fune (32, wvar, var / 32):



Characters

‘letter’ (single quotes)
The value of a character is its ASCIlI code (man ascii)

Example:



Strings
“string” (double quotes)

Evaluates to the address in memory of the first character of the string

Example:

When using strings, the computer creates an array of chars, containing the same
number of cells as the length of the string + 1, and then fills the array with the
ASCII codes of each letter of the string. In the extra cell (the last one) the
computer will store the ASCII code of the special character \0’



Arithmetic operators

+ addition, - subtraction, * multiplication, / division, % modulo (integer remainder)

expression operator expression 1 + 32;
o)

var % 10;
var / warz2 + 1337:

++ increment, -- decrement

-
~e

++var;

var++;

==

——var;

1¥¥;

Na gy

++1;

]
I



Basic expressions | example

main ()

o

ol Al O < Al N
23 + add (32, a, a + b);



Using parentheses with operators
int a;

a =12 + 8;

/* a = 20 x/

a=12 + 8 x 2;

/¥ a = 28 => 12 + (8 x 2) %/
a=12+8 x2 -6/ 2;

/* a=25=>12 + (8 x 2) - (6 / 2) */
a=(((12 + 8) % 2) - 6) / 2;

/* a = 17 x/



Affectations

Change the content of a variable (update the value in memory)

Syntax: var_name — expression;
Examples: a - 1;

a = 32 + 3;

b=a+ c;

¢ = fuhce({1024; a.+4 b):

If the expression is another affectation, then its value is the value affected to the
previous variable



Affectations | elements of arrays and structures

Syntax: var array[expression]

var struct.field name

exXpression;
expression;

Examples:

al0] =b = 32:
alb + k] = 4337;
s.age = 32 / 2 + £():

s.pl3]

¥
aal{98].E[b * 2] =82 + %; F8381 4 2) + 402;

r—fll



Variables assignment | example

add ( ay b, C)
result;
result = a + b + c;
[...]
main ()

ar
b;

98 ;

1 +2 + 3 * 4 - 1;

23 + add (32, a, a + b);
a]

— O o O



Comparisons

< Less than expression operator expression
<= Less or equal to : . .
The value of a comparison is 0 if false, and

== Sejeliie something else if true.
>= Greater or equal

to Examples:
> Greater than (a + 32) > 98
E Different than b == a




Logical operators

| OR, && AND, ! NOT

expression1 || expression2 - if one of the 2 expressions is true, then the whole
expression is true

expression1 && expression2 - if one of the 2 expressions is false, then the whole
expression is false

lexpression - if the expression is false, then the whole expression is true. If the
expression is true, then the whole expression is false.

The value of the whole expression is 0 if false, something else if true



Logical operators

AND && OR || NOT !




Can you solve this?

res =0&& 1 || 1;

/* res = 7 x/

res = (0 & 1) || 1;

/* res = 7 x/

res =0 & (1 || 1);

/* res = 7?7 x/

res = 10 && ((1 '=0) || (1 > 0));
/% res = ? %/



Logical operators | examples

a || b
a && 32 - £f(b + c)
la

'(a == Db)
a < 402 && a > 98



Binary operators

Bitwise operations

| OR, & AND, << LEFT SHIFT, >> RIGHT SHIFT, * XOR
~NOT

expression operator expression
~expression

402;

98 ;
b;

ANV
O_a
N ND Ne

e o

(I R R © T
s AV 2 — | |

¢
Q



Can you solve this?

char bl = 0b00000V1O; /* = 2 *x/
char b2 = 0b00000O11l; /* = 3 */
char b3;

b3 = b2 & bl;

/* b3 = 7 x/

b3 = (b2 >> 2) & 0b00000001;

/* b3 = ?7 x/

b3 = (b2 >> 1) & 0b00000001;

/*

D3 = ¢ %/



More affectations: Compound assignment operators

Perform the operation specified by the additional operator, then assign the result
to the left operand

Example:
expression1 += expression2, is equivalentto: a = 98;
expression1 = expression1 + expression2 a += 1;

+=’ -=’ *=7 /=7 %=7 &=, = A=’ <<=7 >>=

)



Comma operator

expression1, expression2
The value of the whole expression is the value of expression2

Example:

a = 98, 1337;

Don’t use this at home



Ternary conditional

expression1? expression2: expression3

Evaluates to expression2 if expression1 is true, and to expression3 otherwise

Example:

a? 98: 1337
a— 13372 98 f 2: b [f &



sizeof

Unary operator that evaluates to the size in memory of the variable or type, in
bytes

Example:

char c;

sizeof (c);
sizeof (int) ;



&

&var_name
The address in memory of the variable var_name

Example:

p = &C;



Can you solve this?

j =1+ 3;
/% ] = 7 %/
j+=lal;



Control structures

#cisfun



If if ... else

if (expression) if (expression)
[block] [blockl]
else
[block?2]

If the expression is true (the value of

the expression is not 0) then the

block is executed If the expression is true, then block1 is
executed. Otherwise, block2 is executed



if ... else | examples

if (a < 1337) g i

{ b = 0;

) 1t (A = 402
b = O; else ey = fun
} { if (a < 98) else
( if (a < 98)
¢ls8 b = -1; by e =
{ ) else
else B — i
b = 1024; oL ;



while loops

while (expression)
[block]

The while loop lets you repeat a block until a specified expression becomes false.

int array var([98];
int i;

1 =10z

while (i < 98)

{
array var[i] = 1337;
i++;



for loops

The for statement lets you repeat a block a specified number of times. The block
of a for statement is executed zero or more times until an optional condition
becomes false. You can use optional expressions within the for statement to
initialize and change values during the for statement's execution.

for (initialize; condition; update)
[block] Initialize, conditions and

update are optional.

int array var([98];
gt 1.5

ik i Eor: (o)

{
for (i = 0; 1 < 98; i++) ’
{ }
array var[i] = 1337;

}



Can you solve this?

1 alf
nt j;
= 0;
= 2;
hile ((i < 10) && (j < 14))
if (i == 1)
{
IR==7;
}
else if (j == 1)
{
i+=13;
}
else if (i == 6)
{
while (j > 0)
{
=
i ++;
}
}
i ++;
j += 2;



return

return (expression) ;
return;

Ends the function and returns to the calling function

If used with an expression, the expression becomes the return value of the
function

The type of expression must match the return type of the function

Any code after return will never be executed



int add(int a, int b, int c)
{
int result;

result = a + b + ¢;
return (result); /* ends the function and return to main */

}

int main ()
{
int a;
b;

= 98;

=1 2% 3 %4 = 1§

= 23 + add(32, a, a + b); /* calls the function add */
return (0); /* using return in main ends the program */




int main(void) {
18t 1

= 98;

while (i < 0) {
i

}
return (0);

int main (void)
{

int 1i;

= 98
while (1 < 0)
{

Lmesf
}
return (0):;




Example

#cisfun



Source code flow of execution

int add(int a, int b)

{

}

int sum;

sum = a + b;
return (sum);

int main(void)

{

aliphe alp
e ¢
int res;

=D
IE=34;
res = add(i, j);
printf("%d\n", res);
return 0;

1)
2)
3)
4)
5)
6)
7)

8)

9)
10)
11)
12)
k)
14)
15)

Start by the main() function
Allocate 4 bytes for i
Allocate 4 bytes for j
Allocate 4 bytes for res
Set the value 2 to i
Set the value 4 to j
Call the function add():
a) Allocate frame memory for the function
b) Copy the value of i and set to a
c) Copy the value of jand setto b
Allocate 4 bytes for sum
Compute a + b expression
Set the value of the expression a + b to sum
Return the value of sum and go back to the main()
Destroy the function add() in memory
Set the result (return value) of add() to res
Call the function printf() (standard library function)
return O = stop the program



return (0);

#cisfun



